July 20, 2017

Earth as a solid sphere rotation, with no contribution to conservation of angular momentum from interior? Also any momentum exchange for closed systems?

Filed under: Letters from Ionia — zankaon @ 3:39 pm

If the moon is still receding, then now a greater moment of inertia mr^2, and lesser angular orbital velocity. For earth, might there be a related (?) change in angular velocity (lower), and hence in angular momentum; but no momentum exchange with the moon? But still could one have both conservation of angular momentum, as well as momentum exchange, for variously considered closed systems?

For a closed system, one can have exchange of momentum. Did the solid earth core form comparatively early – 100 million years? If so, then there would be a shift (decrease) of mr^2 moment of inertia i.e. mass re-distribution to a lesser radius. Would this then account for a compensatory increase in moment of inertia (i.e. increase in orbital radius) for the moon? Might the moon`s present increase in orbital radius, in part be due to a continued radial inertia, from such long ago earth`s change in moment of inertia; and/or ongoing transfer of momentum, from associated slowing of earth’s rotation?

Early on, did one even have some concomitant increase in angular velocity for earth, consistent with core formation and conservation of angular momentum for earth? However if there is also significant angular momentum transfer to the sun (like for Mercury, Venus?), then contribution to decrease in angular momentum for earth.

Also in general, might the spacing and adjustments to our system’s planets be due to transfer of angular momentum between planets and other objects, involving spin (rotation rate) orbit angular momentum transfer? Hence a broader perspective (i.e. entanglement) of angular momentum re-distribution for the solar  system, inclusive also of KBO objects, Oort cloud, any ejected planets or nacent cores, and even for neutrino belt formation?

Rheologically, the earth seems quite quiet in regards to differential rotational motion? Such as for core – mantle interface, wherein deep plumes seem to be fixed. Also the solid core has perhaps just slight rotation. The asthenosphere (upper mantle) apparently has some flow; always in step with lithospheric plate motion? Still insufficient to contribute to angular velocity and momentum?

So can one consider other possible contributions to any conservation of angular momentum, or momentum exchange, if earth is considered as essentially a solid rotating sphere?

Might there have been more than one planetesimal collisions with proto-earth? However might there not be any isotope compositional differences, since all such objects in close orbits, and hence a shared solar nebula environment?

Mercury has a strong magnetic field, and hence fluid interior. Yet Mercury has essentially no precession. Might this be consistent with no internal comtribution, nor planetesimal collision, contributing to any hypothetical precession? So any lack of precession for Mercury would seem consistent with no internal dynamic changes (such as mass re-distribution, nor significant rheological changes) contributing to a hypothetical precession.

While for earth, precession of the equinoxes, and resultant changing polar star, gives only one periodicity i.e. one frequency. This would seem consistent with only one collision, with resultant external torque changing the angular momentum vector. Whereas multiple planetesimal collisions with earth would seem to give multiple periodicities.

If earth`s rotation is slowing down currently, might this not be due to earthly influences, but rather mainly to momentum exchange with the sun, rather with the moon currently? That is, increasing angular velocity, and hence momentum of our star? Similarly momentum transfer for Mercury, which is in 3:2 resonance with the sun i.e. 2 rotations per 3 orbits; and also for Venus, with tidal lock i.e. one rotation per revolution; likewise for earth?

Might such scenario of momentum exchange for closed 2 body (and more) systems be considered as an example of entanglement, wherein the system as a whole has to be considered in order to fully explain observations? So can both conservation of angular momentum and effectively exchange of angular momentum be considered in concomitant descriptions?

July 15, 2017

Power plants running on aluminum cans?

Filed under: Letters from Ionia — zankaon @ 4:34 pm

Soda (aluminum) cans would seem to be an almost unlimited renewable resource. That is, one could recycle such left over cans – burning such aluminun in power plants, at a temperature perhaps not so different from coal burning. Less polutants than coal? Also there is an almost unlimited supply of bauxite ore, giving aluminum.

July 10, 2017

​Infrared distance from time duration for motion detection?

Filed under: Letters from Ionia — zankaon @ 12:56 pm

For nearer to earth objects, might one utilize low resolution infrared camera to detect motion for various time durations? That is, for motion detected for shorter duration, then object of course is closer, in comparison to infrared object further away, which would require a longer duration for motion detection; hence a rough linear scaling as to object’s distance – such as for further inapparent KBO (Kuiper belt objects), or red dwarf companion etc.?

One could even use infrared time to motion detection for Puto as a fiduciary for KBO distance; that is whether an object is a KBO, or closer/farther away than ~ KBO distance.

Might one even detect a slight infrared glow from Oort cloud? That is, even though the number density is probably very low, still at our great distance might it have a slight infrared presentation – not unlike Milky Way infrared glow from red dwarfs?

However might dust account for any such possible detected torus like Oort cloud glow? At millimeter and sub-millimeter wavelength, wouldn’t one detect such dust?

So for near to earth objects, is even the Oort cloud possibly detectable, but in the infrared?

June 29, 2017

Double play for carbon cap?

Filed under: Letters from Ionia — zankaon @ 2:26 pm

Secularization of a renewable resource – American timber? Rather than nature’s fires and our containment efforts, harvest such wood for sale. Also statistically there is less wood to burn; hence a cap on carbon emissions. Such reduction of carbon emissions could be sold in a variation of cap and trade. Thus doubling the value of such timber harvest.

June 21, 2017

Cosmic entanglement: Do we detect and experience only a small fraction of universe’s total energy?

Filed under: Letters from Ionia — zankaon @ 1:46 pm

For massive neutrinos and Big Bang fermion mass spectrum, and for assumption (comparing density number of baryons to neutrinos, as for proxy of later nucleosynthesis?) that most of mass is carried off by neutrinos, then most of mass\energy of universe(s) 3-volume becomes no longer descriptive (i.e. entanglement), until Big Crunch. Then only for extremely rapid turn around of BC to BB, is total mass/energy of universe and System revealed. Thus is what we see, detect, and experience, just a small fraction (10^-3?) of such total mass/energy of ‘universe’?

see zankaon site

June 10, 2017

Acheulean vs Oldowan tool kit?

Filed under: Letters from Ionia — zankaon @ 5:40 pm

Is the former just characteristic of our species?

However Neanderthal roots probably are exceedingly deep. For example, homo sapien and homo erectus jaw bone would seem more similar than that of Neanderthal’s.

Neanderthal, based on it’s robust physique, was probably always a big game hunter; hence the usage of acheulean tools (i.e. spear points, after fire hardened points etc.). Also homo sapien, and homo erectus (eventually?), must have been in part hunters; hence use of acheulean tools. Therefore​, acheulean tools (any such findings) would not seem specific to our species.

April 20, 2017

Planck scale: Simulation of randomness?

Filed under: Letters from Ionia — zankaon @ 9:20 am

Might deformations of manifold on Planck scale, serve as a simulation of an approach to randomness? Then for finer than Planck scale, might one have further refinement of such randomness approach, by utilization of rational set? Such as Cantor’s ternary set, of ever removing middle ⅓; or of a 3-dimensional version of Weirstrauss function?

However since the primes are clustered, so too the rationals; thus are the rationals not so suitable in a simulation of any randomness of deformations of a manifold? Rather such deformations would seem to be intermittently clustered both spatially and temporally.

A physically related concept, entropy, seems in prusuit of randomness; that is the former expressed as the macrostate characterized by the greatest number of microstates. So entropy is ever trying to spread out energy into a uniform distribution; yet never attaining such goal; consistent with no heat death scenario for the universe?

Is heterogeneity, rather than homogeneity, for Big Bang nucleosynthesis, another example consistent with no attainment of perfect randomness?

So it would seem that since there is no perfect randomness, thus there is always information; even for mathamatics, such as Ramsey theory? Would this then seem consistent with Modified Set Model MSM generality: the alleged ongoing maximizing of cardinality of sets, such as for entropy and information, in comparison to alternative scenarios?

see zankaon’s  SRM/MSM website

March 26, 2017

Motion of a manifold

Filed under: Letters from Ionia — zankaon @ 10:33 am

Would observed and interpreted motion of a manifold (i.e. ‘universe’) alone imply multiplicity?

For example, for our universe, any motion would seem to require the influence of at least another disjoint surface i.e. manifold. Hence any large scale peculiar velocity of our Local Group with respect to Cosmic Background Radiation CBR would per sae seem to indicate multiplicity; that is, more than just one manifold.

March 20, 2017

Can manifolds change; or are they invariant?

Filed under: Letters from Ionia — Tags: , — zankaon @ 5:12 pm

Manifold concept can, in a simplified sense, be refered to as just a surface. Thus shape is irrelevant; hence change in shape is not pertinent.

Manifold can be rendered as continuum; that is an inbetweeness quality, wherein one has a mapping of nearby elements of respective sets. Can one even have a minimum number (3) of elements required to define closeness and inbetweeness?

So can a manifold change; that is change it’s continuum? Or add additional inclusiv.e new continua vis a product space construction, giving successively a new higher dimensional space?

Would bifurcation and merging of manifolds be impossible, even of same continua? Exemplified by no merging of hot Jupiters’ with respective star, even over billion of years? Thus also consistent with no coalescence of compact objects? Also would above be compatable with no bifurcating of manifolds, as in eternal chaotic inflation, nor with merging of 3-branes, nor of patches of different manifold arising within a given manifold, nor of non-manifold suddenly appearing i.e. singularity etc.?

Thus are manifolds stable? Thus no creation nor destruction of manifolds. Hence for example, consistent with a divergent set of entangled always disjoint manifolds?

Would all of this seem consistent with concept of manifolds being truculent, and difficult to deal with? As if  they want to be left alone; perhaps because they are not capable of change i.e. always invariant? 

Modified Set Model at HTTP://

March 4, 2017

Drilling into martian glaciers, with a drone?

Filed under: Letters from Ionia — Tags: , , — zankaon @ 1:33 pm

One or two surface glaciers have been detected on Mars, perhaps covered with debris to some depth; uv broken down surface of such Martian rock ice? Earth-like ice should not be there, due in part to low atmospheric pressure. Hence the case for an altered ice i.e. martian rock ice, with an altered (strengthen) bond between water molecules; taking on the appearance of rock, but of a lesser density. One could drill into it, and compare densities (amperage as a proxy) with an earth ice model, and also utilize infrared spectroscopy of bond nature.

But the glaciers represent a small target, from orbit. Perhaps one could land within ~50-100 miles, and launch a large enough drone to not only get to the glacier, but also to drill into it.

Martian atmospheric pressure of 3-5 millibars would seem to preclude propellers. Instead one could utilize small rockets and/or simple non-combustible gas cartridges, since only Newton’s 3rd law applies.

Old Martian geological formations would seem consistent with flow of a fluid – presumably liquid water. Whereas the glaciers in question seem to have a freshness, newness to them; perhaps wind sweept, with minimal regolith, or none? Might uv effect give an irregularity (from sublimation) to surface; or might subterranean hard smoothness be retained? High resolution photography, as a minimal objective?

The moon’s regolith seems some what like pancake flour; with a stickiness secondary to no atmospheric molecules. Whereas on Mars, one has a dust patina; air molecules intersperse such particulate matter.

If like earth ice, then such glaciers could not exist on the surface. So would this seem consistent with a physical phase change for hydrogen bonding between water molecules? Perhaps the rheological outflow might be somewhat like slow motion hard surface being squeezed out, due to subterranean compression forces? 

WATSON: A Wireline Ultraviolet Raman and Fluorescence Spectrometer for Subsurface Organic Detection in Northern Ice Sheets 

WATSON is a deep UV Raman and fluorescence instrument intended to detect, characterize, and map the distribution of organic material in subsurface ice.

Older Posts »

Blog at