October 16, 2016

Supernova – fission explosion? A precursor neutron star?


Cassiopeia A        NASA / JPL/ Caltech

Might one consider any SN1987 precursor star as a predominantly fusion star, as a source of energy; wherein one has gravitational collapse to a critical mass density, and then fission process commencing and predominating? Higher mass element nucleosynthesis would require free neutrons; thus wouldn’t nuclei fission be required?

If there is no detectable precursor star, might this be consistent with just a solo neutron star acquiring additional mass, or internal dynamics leading to run away explosive fission process i.e. supernova? Perhaps an internal/external circulating plasma in magnetic field of such neutron star, and redistribution of energy (magnetic reconnect – entanglement ?), leading to instabilities, such as localized change in neutron density?

What might be consistent with a supernova precursor being a neutron star? Since the supernova database continues to get bigger (including association with most long duration GRB), might one eventually match it to x-ray binary database (Chandra) in order to notice overlap of any SN with planar patch for x-ray binary? Then, if practical, see if a binary star is still there. If present, then might SN have originated from secondary compact object of x-ray binary?

Could one then consider the odds of any such alleged association, by comparing respective x-ray binary and gamma ray burst databases for association; such latter comparison, currently null?

Might another approach to any supernova remnant SNR, be to look for any motion of luminous star very near to SN1987 co-ordinates; within 1/2 arcsecond? That is, SN are anisotropic, as revealed by their effective absence in globular clusters. Therefore would any stellar motion  be evidence of a precursor binary? Also utilize infrared spectroscopy, looking for any remnant object, as elaborated on, below?

Shock waves expanding at 10s of thausands km/sec; whereas stellar natal kick might be at just ~1000 km/sec.? For the latter velocity of any possible surviving star of 1987 SN possible binary, for over 30 years, at a distance of ~165,0oo lyrs, what would be the angular displacement; discernable?

As critical mass density (sufficient for sustained chain reaction)  is reached, might one also have an energy density associated with eventual red dwarf formation? Perhaps the latter not just a remnant, but consistent with a fission process, contributing additionally (or solely) to what we detect as a supernova explosion?

Stars contain an abundance of iron (as per spectroscopy), not unlike earth and stellar nebula. If cosmic rays are predominantly iron nuclei, them might this also be consistent with a supernova fission process, including (mainly?) iron? But where is iron in a SN explosion? One has evidence of nickel and cobalt; both next (in atomic number and weight) to iron in Periodic Table. Are iron nuclei being utilized and consumed as a fissionable fuel in such SN explosion and element synthesis?

Might such considered fission process (perhaps iron doped with .1% uranium?), trigger off a supernova explosion, rather than just being an accompanying process? Might additional energy released be mainly massive neutrinos? In terms of energetics, is most of energy released in supernova explosion from neutrinos? Does fission process generate more neutrinos, as well as heat, than fusion?

Is the energy scale for SN limited to just 2 fermion generations (i.e muons) or might one have higher energy levels associated with fermion mass spectrum? What energy (mass density) scale is associated with (if) neutrino trapping; approximately same as for neutron (nucleon) degeneracy? But less than short duration GRB energy scale?

If higher energy scale, as for fermion mass spectrum, then one would seem to have left over higher generation massive neutrinos. Assuming no decay nor annihilation, and comparatively limited nucleon absorption, might our galaxy (including dark matter halo?), Large Magellanic Cloud, and solar system’s neutrino belt, contain a smaller fractional number of such more massive neutrinos, in addition to electron neutrinos?

Might a supernova explosion description be more than just release of gravitational potential energy, and more than just a bounce off an energy (i.e. mass density) nucleon (?) surface (simulations not consistent with such bounce?); and more than just a fusion process, since fuel has been markedly reduced? Instead might such explosion represent a qualitative and quantitative shift to a predominant fission process, with also perhaps a remnant, suggestive of such switch?

What is the most likely outcome of a supernova – no remnant? Might any database of supernova remnants (SNR) contain a compact object; a significant portion of original massive star? Would a pulsar be part of any such SNR database? Might likelihood of compact object be mass (10-15 solar mass?) dependent? What percentage of neutron stars are pulsars? If there were a supernova remnant, might it be of a lesser mass, such as red dwarf mass?

Or if a neutron star were a SN1987 remnant, then wouldn’t there be central x-ray detection, from strong magnetic field, near infall to magnetic pole? Might one have both a SN precursor neutron star, and also a somewhat lesser mass NS? But would there be sufficient fuel for SN in such scenario?

Could a supernova explosion sometimes leave behind a red dwarf remnant (i.e. SNR) fission star (such as .04 of 4 solar mass precursor), usually detectable only in infrared? Would infrared spectroscopy enable detection of such an object?

For example, might infrared spectroscopy distinguish between heat of expanding gas shell and an interior remnant source? Even if the site of SN1987 is obscured by gas clouds, inter-stellar debris etc., still might infrared spectroscopy reveal an object at SN1987 co-ordinates? Whereas gas clouds, and other diffuse infrared sources, might just reveal a slight non-specific pattern.

Thus would any such infrared spectroscopy detection (and thus revealed object?) seem consistent with the significance of a fission process in initiation of explosiveness of supernova phenomena?

Periodic Table

Chandra images

Theory of core-collapse of supernovae



Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at