zankaon

December 8, 2015

Red dwarf – fission star?

Filed under: Letters from Ionia — Tags: , , — zankaon @ 1:10 pm

Globular clusters form early (stellar age of ~12 byrs ?). Do such globular clusters have a strong infrared signature? If not, then consistent with lack of early red dwarf formation? Also if nearby Proxima centauri is a red dwarf, then such triplet system would not seem that old; ~4Byrs? Hence might red dwarfs form at stage of maximum star formation, at redshift z~2-3? But then not enough time to use up all of hydrogen fuel, if fusion to fission (i.e non-helium synthesis) star scenario is entertained.

Might infrared spectroscopy of red dwarf model – Proxima centari be useful? However do cooler stars, such as spectral class M infrared dwarfs, have greater number of spectral lines, relating to cooler surface temperature, as compared to G spectral class of our Sun?

Might red dwarfs initially form as fission (i.e. non-fusion) stars, wherein a physical phase change, associated with increased mass density and/or pressure increase, gives a built in solid-like, or liquid interior phase change? For example Proxima centari has mass density ~40x that of our Sun, with ~.12 of solar mass and ~1/7 of solar diameter. Mean density increases for stars of decreasing mass, as for lower right on H-R diagram for main sequence stars. Also might some x-ray binares have a red dwarf as a companion, dumping gas onto such compact; hence consistent with fluid exterior for such red dwarf. However one could still have a physical phase change for interior; hence consistent with infrared signature.

So is Proxima centari a good nearby optical model for a red dwarf; the latter most typical for stars? And is such strong infrared signature and high mass density suggestive of internal alternative nuclear chemistry interactions, with a possible physical phase change, with no helium synthesis; rather a fission star, especially for a solid-like interior?

For x-ray binary, might one have accreting mass, both gaseous and even liquid outer core, being drawn off from red dwarf toward compact object (ss433 x-ray binary? )? Might one have residual solid core fission for such red dwarf? Might it constitute a residual red dwarf for eclipsing x-ray binary? Has it’s x-ray profile (from core?) been largely unaffected?

If all red dwarfs are fission stars, then signifcant gamma rays and x-rays? So in addition to difference in infrared signature for fission vs fusion (i.e. sun like) stars, might there also be a difference in x-ray signature, related to gamma rays for fission red dwarf stars? Also if gamma ray pulsars have an infrared signature, might not only the interior processes be similar to a red dwarf, but also might they be red dwarfs?

Might red dwarf star have a rotating solid core? A fission core, detectable in infrared, that lasts essentially indefinitely? For example, might IR detect fission core for ss433 companion of x-ray binary?

If red dwarfs (with small envelope?) have a solid fission core; then doesn’t one have an expanded stellar definition? Might natural plutonium then be widespread, since originally from such fission core stars? Or is sufficient plutonium burned in such ‘breeder’ fission core stars? For fission star, then element synthesis would not stop with stability of iron nucleus.

Might our whole understanding of what delimits (defines) a star need reassesment? For example, Proxima centauri has a very low mass of .12 solar mass, low volume, and hence high mass density. Also a low surface temperature. So if Proxima has a significant infrared signature, suggesting a non-fusion star, and perhaps solid core, then low mass, volume, and low temperature might not seem so significant for star-dom status. But perhaps mass density, and pressure (for small volume?) relate to a so-called fission star status. Also can even a less massive Brown dwarf, since having an infrared signature similar to red dwarfs, be classified as a very low mass fission star? So is what’s going on in the interior that which defines a star?

Might equation of state (mass density and pressure) be irrelevant? That is, for iron core with 0.1 % uranium, would this be sufficient to account for observed infrared signature of a red dwarf?

Fusion, most efficient for a fluid core; and fission most suitable for rotating solidified stellar core? Can one have fission for just a liquid core; perhaps for brown dwarf? Might one even have a heterogeneous core, with liquid ‘lakes’ and some fusion, together with surrounding solid state fission core, generating copious heat, sufficient to maintain such ‘lakes’? But would there be sufficient fuel for such fusion ‘lake’ reactors? In principle, might neutrino flux distinguish a fusion reactor from fission reactor core, since associated more so with latter?

Might brown dwarfs be fission core reactor stars with (or without?) some ‘lakes’? How does infrared image of brown dwarf compare to that of red dwarf, and to that of less massive Jupiter? Might such brown dwarf appear in infrared more like a red dwarf; hence consistent with fission core?

If most stars are red dwarfs, then do most stars have a fission core? Thus on H-R diagram, lower right would constitute majority of stars – red dwarfs? And middle main sequence constituting a lesser number of fusion stars, like our sun. On such diagram does one measure bolometric luminosity; but not inclusive of infrared, wherein most of energy is radiated for a red dwarf?

Are any hot jupiters associated with a red dwarf, based on infrared signal? How close to red dwarf of .12 solar mass, would a hot Jupiter’s orbit be; inside corona (flares for Proxima centauri, indicative of energy re-distribution in magnetic field via magnetic reconnect)?

Hertzsprung-Russell diagram

If fusion stars, fission stars, brown dwarf stars (?), and Jupiter, all have a magnetic field, then might all have at least a circulating liquid/solid core?  also see zankaon web site.   TMM

‘Lucy in the sky’ with plutonium ….. ?

Advertisements

Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at WordPress.com.